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Abstract—Most security mechanisms proposed to date unques-
tioningly place trust in microprocessor hardware. This trust,
however, is misplaced and dangerous because microprocessors
are vulnerable to insider attacks that can catastrophically com-
promise security, integrity and privacy of computer systems. In
this paper, we describe several methods to strengthen the funda-
mental assumption about trust in microprocessors. By employing
practical, lightweight attack detectors within a microprocessor,
we show that it is possible to protect against malicious logic
embedded in microprocessor hardware.

We propose and evaluate two area-efficient hardware methods
— TRUSTNET and DATAWATCH — that detect attacks on
microprocessor hardware by knowledgeable, malicious insiders.
Our mechanisms leverage the fact that multiple components
within a microprocessor (e.g., fetch, decode pipeline stage etc.)
must necessarily coordinate and communicate to execute even
simple instructions, and that any attack on a microprocessor
must cause erroneous communications between microarchitec-
tural subcomponents used to build a processor. A key aspect of
our solution is that TRUSTNET and DATAWATCH are themselves
highly resilient to corruption. We demonstrate that under realistic
assumptions, our solutions can protect pipelines and on-chip
cache hierarchies at negligible area cost and with no performance
impact. Combining TRUSTNET and DATAWATCH with prior
work on fault detection has the potential to provide complete
coverage against a large class of microprocessor attacks.1

Index Terms—hardware security, backdoors, microprocessors,
security based on causal structure and division of work.

I. I NTRODUCTION

One of the key challenges in trustworthy computing is
establishing trust in the microprocessors that underlie all
modern IT. The root of trust in all software systems rests
on microprocessors because all software is executed by a
microprocessor. If the microprocessor cannot be trusted, no
security guarantees can be provided by the system. Providing
trust in microprocessors, however, is becoming increasingly
difficult because of economic, technological and social fac-
tors. Increasing use of third-party “soft” intellectual property
components, the global scope of the chip design process,
increasing processor design complexity and integration, the
growing size of processor design teams and the dependence
on a relatively small number of designers for a sub-component,
all make hardware highly susceptible to malicious design.

1Appears in Proceedings of the 31st IEEE Symposium on Security &
Privacy (Oakland), May 2010
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A sufficiently motivated adversary could introduce backdoors
during hardware design. For instance, a hardware designer,by
changing only a few lines of Verilog code, can easily modify
an on-chip memory system to send data items it receives to
a shadow address in addition to the original address. Such
backdoors can be used in attacking confidentialitye.g., by
exfiltrating sensitive information, integritye.g., by disabling
security checks such as memory protection, and availability
e.g.,by shutting down the component based on a timer or an
external signal. Some recent high-profile attacks have beenat-
tributed to untrustworthy microprocessors [10]; hardware trust
issues have been a concern for a while now in several domains,
including in military and public safety equipment [67], and this
issue has attracted media attention lately [45].

Because hardware components (including backdoors) are
architecturally positioned at the lowest layer of a computa-
tional device, it is very difficult to detect attacks launched or
assisted by those components: it is theoretically impossible2

to do so at a higher layere.g., at the operating system or
application, and there is little functionality available in current
processors and motherboards to detect such misbehavior. The
state of practice is to ensure that hardware comes from a
trusted source and is maintained by trusted personnel — a
virtual impossibility given the current design and manufac-
turing realities. In fact, our inability to catch accidental bugs
with traditional design and verification procedures, even in
high-volume processors [59], makes it unlikely that hidden
backdoors will be caught using the same procedures, as this
is an even more challenging task.3

In this paper we investigate how microprocessor trust can
be strengthened when manufactured via an untrusted design
flow. Figure1 shows the standard steps used to manufacture
microprocessors. This paper focuses on one of the initial
production steps, which is the coding phase of hardware design
(register transfer level, or RTL). Any backdoor introduced
during the initial phase becomes progressively more difficult
to catch as it percolates through optimizations and tools inthe

2It should be noted, however, that in practice it may be possible to detect
discrepancies in the state of the system, such as cache misses.Such detection
cannot be guaranteed, and it largely depends on both external artifacts
used for the detection (e.g., a reference time source) and on sub-optimal
implementation of the backdoor.

3The International Technology Roadmap for Semiconductors notes that the
number of bugs escaping traditional audit procedures will increase from five
to nine per 100,000 lines of code in the coming years [2].
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Fig. 1. Microprocessor design flow and scope of this paper.

later phases. Prior work on detecting attacks on hardware by
malicious foundries [12][17][16][24][40][53][67] assumes as
a starting point the availability of a trusted RTL model, called
a golden netlist. Our work aims to provide this trusted, golden
netlist.

The traditional approach to building trustworthy systems
from untrustworthy components is to redundantly perform a
computation on several untrustworthy components and use
voting to detect faulty behavior. For example,N processors
designed by different designers can run the same instructions,
and the most popular output can be accepted. This solution,
however, is not viable for microprocessors because it increases
the initial design cost significantly by increasing the sizeof
the design team and verification complexity of the design.
This solution also increases the recurring operational costs by
decreasing performance and increasing power consumption.
In this paper, we describe a novel method for building a
trustworthy microprocessor (at low cost) from untrusted parts,
without the duplication required by theN version model.

Our technique exploits the standard division of work be-
tween different sub-components (or units) within a micropro-
cessor, universally available in microprocessor designs.We
do this by recognizing simple relationships that must hold
between on-chip units. The underlying observation that drives
our technique is that the execution of any instruction in a
microprocessor consists of a series of separate but tightly
coupled microarchitectural events. For example, a memory
instruction, in addition to using a cache unit needs to use the
fetch, decode and register units. We take advantage of this
cooperation in order to detect tampering by noticing that if
one unit misbehaves, the entire chain of events is altered.

We explain our technique with an analogy: say, Alice, Bob
and Chris are involved in a fund raiser. Alice is the Chief
Financial Officer, Chris is a donor, and Bob is a malicious
accountant. Let us say Chris makes a donation of $100 towards
the fund-raiser and makes the payment to Bob. Let us also
say Alice follows all probable donors on Twitter so that she
can send a thank you note as soon as donors post tweets
on their charitable deeds. Chris tweets: “Donated $100 to
charity.” Malicious Bob swipes $10 off and reports to Alice
that Chris only donated $90. Of course, Alice catches Bob
because she can predict Bob’s output based on Bob’s input
from Chris. Applying this analogy to our microprocessor, a
malicious cache unit cannot send two outputs when in fact
only one memory write instruction has been decoded. Any
unit that observes the output of the instruction decoder and

output of the cache will be able to tell that tampering has
happened along the way.

Our method relies on the fact that cooperating units are
not simultaneously lying — a reasonable assumption because
high-level design engineers on a microprocessor project are
typically responsible for only one or few processor units but
not all [26, 46]. Using these relationships, our system, called
TRUSTNET, is able to provide resilience against attacks to any
oneunit, even if that unit is a part ofTRUSTNET itself. Further,
TRUSTNET does not require that any specific unit is trusted. A
second system, calledDATAWATCH , watches select data on the
chip in order to protect against attacks that alter data values
without directly changing the number of outputs. Continuing
on the previous analogy, this would be a case where Bob,
the evil accountant, passed on the full $100, but passed on
Canadian dollars instead of American dollars, keeping the
difference for himself. WhenDATAWATCH is active, Chris’
tweet would contain the fact that he donated American dollars,
tipping off Alice about Bob’s crime.

In this paper, we evaluate the resiliency ofTRUSTNET

and DATAWATCH against a set of attacks implementable in
RTL during the initial processor design steps. We show that
TRUSTNET and DATAWATCH protect the pipeline and cache
memory systems for a microprocessor closely matching the
Sun Microsystems’ OpenSPARC T2 processor against a large
class of attacks at the cost of negligible storage (less than2 KB
per core) and no performance loss. Additionally,TRUSTNET

andDATAWATCH , in concert with pre-existing solutions (partial
duplication [25]), can provide coverage against many known
hardware design level backdoors.

In summary, the primary contributions of this paper are:

• We present a taxonomy describing the attack space for
microprocessor designs. The key observation that forms the
basis of this taxonomy is that a microprocessor attack can only
change the number of instructions or corrupt instructions.

• We present a novel, general solution that exploits the division
of work and causal structure of events inherent in micropro-
cessors for detecting a large class of attacks created during
the initial stages of microprocessor design by knowledgeable,
venal, malicious insiders. To the best of our knowledge, we are
the first to propose using violation of co-operation invariants
in a microprocessors to detect malicious attacks.

The rest of the paper is organized as follows: SectionII
describes related work. SectionIII describes the threat model,
assumptions of our study and a taxonomy of attacks. In
Section IV we describe our solution. SectionV presents
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Fig. 2. Proposed work in the context of broader work on hardware
threats. Prior countermeasures against hardware threats rely on a trusted
microprocessor which this work aims to provide.

evaluation. We conclude and present directions for future
research in SectionVI .

II. RELATED WORK

Microprocessors are one part of a large ecosystem of
hardware parts that forms the trusted computing base. There
has been a significant amount of work over the past several
decades on protecting different aspects of the ecosystem (Fig-
ure 2). In this section, we discuss threats and countermeasures
against all classes of hardware, not just microprocessors.

So far hardware, collectively the processor, memory, Net-
work Interface Cards, and other peripheral and communication
devices, has been primarily susceptible to two types of attacks:
(1) non-invasive side-channel attacks and(2) invasive attacks
through external untrusted interfaces/devices. We define an
attack as any human action that intentionally causes hardware
to deviate from its expected functionality.

Physical side-channel attacks compromise systems by cap-
turing information about program execution by analyzing em-
anations such as electromagnetic radiation [31, 33, 42, 47, 53]
or acoustic signals [15, 44, 60] which occur naturally as
a byproduct of computation. These attacks are an instance
of covert channels [39] and were initially used to launch
attacks against cryptographic algorithms and artifacts (such
as “tamper-proof” smartcards [43][37]) but general-purpose
processors are also pregnable to such attacks. There have
been several attacks that exploit weaknesses in caches [5,
8, 19, 21, 48, 49, 50, 51, 51, 52] and branch predic-
tion [6, 7, 9]. Some countermeasures against these threats
include self-destructing keys [32, 35, 62, 72] and new circuit
styles that consume the same operational power irrespective
of input values [27, 38, 58, 64, 65] and microarchitectural
techniques [11, 22, 63, 66, 69].

Invasive untrusted device attacks typically are carried out
by knowledgeable insiders who have physical access to the
device. These insiders may be able to change the configuration
of the hardware causing system malfunction. Examples of such
attacks include changing the boot ROM, RAM, Disk or more
generally external devices to boot a compromised OS with
backdoors or stealing cryptographic keys using unprotected
JTAG ports [13][56]. A countermeasure is to store data in
encrypted form in untrusted (hardware) entities. Since the‘80s

there has been significant work in this area [61]. Secure co-
processors [28, 35] and Trusted Platform Modules [4] have
been used to secure the boot process. More recently, enabled
by VLSI advances, researchers have proposed continuous pro-
tection of programs and on-chip methods for communication
with memory and I/O integration [29, 40].

A new threat that has recently seen a flurry of activity is
intentional backdoors in hardware. As hardware development
closely resembles software development both in its global
scope and liberal use of third party IP, there is growing interest
and concern in hardware backdoors and their applications to
cyber offense and defense. Broadly speaking, work in this area
can fall into one of three categories: threats and countermea-
sures against malicious designers, threats and countermeasures
against malicious design automation tools, and threats and
countermeasures against malicious foundries. There has been
some work on detecting backdoors inserted by malicious
foundries that typically rely on side-channel informationsuch
as power for detection [12, 16, 17, 24, 41, 54, 57, 70].
There has been no work on providing countermeasures against
malicious designers, which this work aims to address.

There have been a few unconfirmed incidents of design-level
hardware attacks [10] and some work in academia oncreating
hardware backdoors. Shamiret al. [20] demonstrate how to
exploit bugs in the hardware implementation of instructions.
King et al. [36] propose a malicious circuit that can be
embedded inside a general-purpose CPU and can be leveraged
by attack software executing on the same system to launch
a variety of attacks. They demonstrate a number of such
hybrid software/hardware attacks, which operate at a much
higher abstraction level than would generally be possible with
a hardware-only attack. Although they do not discuss any
protection or detection techniques, their work is particularly
illuminating in demonstrating the feasibility and ease of cre-
ating such attacks through concrete constructs.

III. T HREAT MODEL

A malicious hardware designer has to be strategic in cre-
ating backdoors because processor development, especially
commercial development, is a carefully controlled process.
Broadly speaking, the attacker has to follow two steps: first,
design a backdoor for an attack, and second, build a trigger for
the attack. Just like regular design, the attacker has to handle
trade-offs regarding degrees of deception, time to completion,
verification complexity, and programmability. In this section
we discuss these tradeoffs for attack triggers (SectionIII-B )
and attack backdoors (SectionIII-C). However, we begin our
discussion by detailing assumptions in our threat model.

A. Assumptions

• Assumption #1: Division of WorkTypically, a microproces-
sor team is organized into sub-teams, and each sub-team is
responsible for a portion of the design (e.g.,fetch unit or load-
store unit). Microprocessor design is a highly cooperativeand
structured activity with tens to hundreds of participants [14].
The latest Intel Atom Processor, for instance, is reported to
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have had 205 “Functional Unit Blocks” [3]; a design of a
recent System-on-Chip product from ST Microelectronics is
reported to have required over 200 engineers hierarchically
organized into eight units [1]. We assume thatany sub-unit
team in a design can be adversarial but that not more than one
of the sub-units can be simultaneously compromised. While
adversarial nation-states could possibly buy out complete
teams to create undetectable malicious designs, it is more
likely that attackers will be a small number of “bad apples.”

• Assumption #2: AccessThe focus of this work is to detect
the handiwork of malicious microprocessor designers, which
includes chip architects, microarchitects, RTL engineersand
verifiers, and circuit designers. These workers have approved
access to the design, privilege to change the design, and an
intricate knowledge of the microprocessor design process and
its workings. A malicious designer will be able to provision
for the backdoor either during the specification phase,e.g.,
by allocating “reserved bits” for unnecessary functions, or
by changing the RTL. We assume this will be unnoticed
during the implementation phase and after the code reviews
are complete. Our assumption that code audits will not be
able to catch all backdoors is justified because audits are not
successful at catching all inadvertent, non-malicious design
bugs.

• Assumption #3: Extent of ChangesThe malicious designer
is able to insert a backdoor: (i) using only low tens of bits
of storage (latches/flops etc.) (ii) with a very small number
of logic gates and (iii) without cycle level re-pipelining.This
assumption does not restrict the types of attacks allowed. How-
ever, we assume the attacker is clever enough to implement
the changes in this way. This assumption ensures that the ma-
licious designer can slip in the hardware backdoor unnoticed
past traditional audit methods with very high probability.

• Assumption #4: TriggersAlthough an unintentional bug can
have the same consequences as a malicious backdoor, a critical
difference is that unlike a bug, a backdoor may not be always
active. If the backdoor is always active, there is a high chance
of detection during random, unit-level design testing. To avoid
detection, the malicious designer is likely to carefully control
when the backdoor is triggered.

• Assumption #5: ROMsWe assume that ROMs written
during the microprocessor design phase contain correct data. In
particular, we assume that microcoded information is correct.
The reason for this assumption is that the data in ROMs is
statically determined and not altered by the processor’s state.
For this reason, we consider this security issue to be better
solved statically than at runtime.

B. Attack Triggers

An RTL level attacker can use two general strategies for
triggering an attack: a time-based trigger or a data-based
trigger. From the RTL perspective, input data and the passage
of time are the only factors determining the state of the
microprocessor (any attack using environmental factors would
be a side-channel attack; we are concerned with attacks

using digital input signals), so these two strategies or some
combination of them are the only ones possible.

• Trigger #1: Cheat Codes (CC)A malicious designer can
use a sequence of uncommon bits, embedded in either the
instruction or data stream to unlock/lock the backdoor. For
instance, a store instruction to a specific address and a certain
value (one pairing in a2128 space for a 64-bit microprocessor)
can be used as a key to unlock a backdoor. Since the search
space is so large, the chance that this trigger is hit by random
verification is negligible. Kinget al. describe a variant of
this attack in which a sequence of instructions in a program
unlocks a trigger. The CC method gives an attacker a very high
degree of control on the backdoor but may require a reasonably
sophisticated state machine to unlock the backdoor. Further, it
requires execution of software that may not be possible due
to access restrictions. This is due to the fact that in order to
ensure the ‘magic’ instruction(s) is issued, the attacker must
execute a program containing that instruction(s). If the attacker
cannot obtain access privileges, then this will not be possible.

• Trigger #2: Ticking Timebomb (TT)An attacker can build
a circuit to turn on the backdoor after the machine has been
powered on for a certain number of cycles. The TT method is
very simple to implement in terms of hardware; for instance,a
simple 40-bit counter that increments once per processor clock
cycle can be used to open a backdoor after roughly 18 minutes
of uptime at 1 GHz. Unlike the CC method, TT triggers do not
require any special software to open the backdoor. However,
like CC triggers, TT triggers can easily escape detection during
design validation because random tests are typically not longer
than millions of cycles.

C. Backdoor Types

While the space of possible attacks is limited only by the
attacker’s creativity and access to the design, attacks canbe
broadly classified into two categories, based on their runtime
characteristics. We observe that an attacker can either create
a hardware backdoor to do more (or less) work than the
uncompromised design would, or he/she can create a backdoor
to do the same amount of work (but work that is different
from that of an uncompromised unit). By work, we mean
the microarchitectural sub-operations or communicationsthat
must be carried out for the execution of an instruction. This
is a complete, binary classification.

• Emitter Backdoors (EB)An emitter backdoor in a mi-
croarchitectural unit explicitly sends a different numberof
microarchitectural communication than an uncompromised
unit. An example of an emitter backdoor in a memory unit
is one that sends out loads or stores to a shadow address.
When this type of attack is triggered, each memory instruction,
upon accessing the cache subunit, sends out two or more
microarchitectural transactions to downstream memory units
in the hierarchy. Similar attacks can also be orchestrated for
southbridge (I/O control hub) components, such as DMA
and VGA controllers, or other third party IP, to exfiltrate
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confidential data to unauthorized locations.

• Corrupter Backdoors (CB)In this type of attack, the
attacker changes the results of a microarchitectural operation
without directly changing the number of microarchitectural
transactions. We consider two types of corrupter backdoors
— control corrupters and data corrupters.

A control corrupter backdoor alters the type or semantics
of an instruction in flight in a way that changes the number of
microarchitectural transactions somewhere else on-chip (e.g.,
at a later cycle). These attacks are similar to emitter attacks,
except that instead of simply issuing an extra instruction,they
use some part of a legitimate instruction in order to change
the number of transactions happening on-chip. For example,
if a decode unit translates a no op instruction into a store
instruction, this will indirectly cause the cache unit to do
more work than it would in an untampered microprocessor.
However, this change will not manifest itself until a later cycle.
This is different from an emitter attack because the decode
unit does not insert any new transactions directly; it decodes
exactly the same number of instructions in the tampered and
untampered case, but the value it outputs in the tampered case
causes the cache unit to do more work a few cycles later.

Data corrupter backdoors alter only the data being used in
microarchitectural transactions, without in any way altering
the number of events happening on-chip during the life of the
instruction. Examples of this could include changing the value
being written to a register file or changing the address on a
store request. For instance, an instruction might be maliciously
decoded to turn an addition into a subtraction, causing the
ALU to produce a difference value instead of a sum value.4

• Emitter vs. Corrupter Trade-offsFrom the attacker’s point
of view, emitter attacks are easy to implement. Emitter attacks,
such as shadow loads, have very low area and logic require-
ments. They also have the nice property (for the attacker)
that a user may not see any symptoms of hardware emitters
when using applications. This is because they can preserve
the original instruction stream. Often in prior work the term
‘backdoor’ actually means ‘emitter backdoor.’

Corrupter attacks, on the other hand, are more complicated
to design and harder to hide from the user. In fact, a control
corrupter attack requires strictly more logic than a similar
emitter attack because rather then simply sending a trigger, it
must hide the trigger within a live instruction (which involves
extra multiplexing or something equivalent). In these attacks,
rather than simply emitting bogus signals, the user’s own
instructions are altered to invoke the attack. Since the user’s
instructions are being altered, the attacker must have some
knowledge of the binaries being run to change the data without
tipping off the user. If the execution of the backdoor caused
the user’s program to crash, this would violate the secrecy of

4Data corrupter backdoors can be used to change program flow, for example
by changing a value in a register, thus changing the result ofa future ‘branch-
if-equal’ instruction. However, each individual instruction will still do the
same amount of work as it should. The extra work will not occur until
the corrupt instruction has been committed. Thus each instruction considered
individually will appear to be doing the correct amount of work.

the attack. Corrupter attacks also scale poorly with datapath
sizes, since they require decoding of user instructions. Inthe
case of multi-stage decoders, the backdoor itself may require
latches and execute over multiple cycles.

To summarize, the “biggest bang for the buck” for the
attacker is from ticking-timebomb-emitter attacks. They can
be implemented with very little logic, are not dependent on
software or instruction sequences, and can run to completion
unnoticed by users. In the following section, however, we
discuss strategies for defending against all types of backdoors
and triggers.

IV. PRINCIPLES FORM ICROPROCESSORPROTECTION

We propose as a solution to the untrusted designer prob-
lem an on-chip monitoring system that recognizes malicious
behavior at runtime, regardless of the trigger or unit. Differ-
ent attacks require different defenses. As such, we present
our solution in four flavors. We first describe low overhead
solutions for emitter and control corrupter protection, called
TRUSTNET and DATAWATCH . We then describe how a form
of partial duplication, which we call ‘smart duplication’ can
be used against some data corrupters. For data corrupters not
protected by any of the above mechanisms, we recommend
full duplication. For this initial study, we discuss our solutions
in the context of simple microprocessors that do not re-order
instructions.

A. Emitter Backdoor Protection

Emitter backdoors by definition cause more (or less) mi-
croarchitectural transactions to occur in the corrupted unit
than the instruction specifies. We designed theTRUSTNET

monitoring system to watch the microarchitectural transactions
in each unit and catch this class of attacks. Conceptually,
the system detects violations of deterministic communication
invariants between on-chip units, which are violated by emitter
backdoors.

Toward this end, we designed the prediction/reaction mon-
itor triangle, depicted in Figure3. A triangle consists of
three different on-chip units - a predictor, a reactor, and a
target (monitored unit in Figure3). The predictor unit sends
messages to the monitor, predicting events that should come
out of the target unit. If the reactor does not receive a predicted

Predictor

Unit

Monitored

Unit

Reactor

Unit

Monitor

The monitor for an unit

can be placed on any

on-chip unit

Input event

notification

Output event

notification

Reactor: Any unit that

receives output from 

the monitored unit

Predictor: Any unit that

supplies inputs to the

 monitored unit

Fig. 3. Overview of theTRUSTNET and DATAWATCH monitoring
scheme.
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event, or if the reactor receives an event that was never
predicted, then the monitor throws an alarm.

The target unit is any unit on-chip. For one example, using
Figure 4 as reference, consider the decode unit (IDU) as a
target. The predictor unit can be any unit that sees events
before they reach the decode unit, for example the fetch unit
(IFU). The fetch unit sees every instruction before it reaches
the decode unit. The reactor unit can be any unit that sees
events after they pass through the target. For example, it
can be the execution unit (EXU), because that unit always
receives information about instructions after they pass through
the decode unit. The monitor itself can reside anywhere on-
chip. The IFU knows each cycle whether or not it has fetched a
new instruction. The EXU knows at each cycle whether or not
a valid instruction is advancing through the pipeline. Having
these two sources of knowledge corroborate prevents the
IDU from ever inserting bogus instructions into the pipeline.
Nothing extra has to be computed, since this knowledge is
already represented by signals in the respective units.

A vital aspect of this design is that the target unit never com-
municates with the monitor. Therefore, even if the designerof
unit X knows the design of the monitor (which is likely), the
designer is unable to corrupt the monitor of X. For this reason,
it is important that the monitor of X should not be physically
part of unit X.

Recall the assumption from SectionIII that only one sub-
team is corrupt, and so an attacker cannot corrupt two in-
dependent units on-chip. This assumption guarantees that our
system is secure against the attack space. Consider the monitor
set up to watch some unit X. There are four items in play -
the predictor of X, which we will call P; the reactor to X,
which we will call R; X itself; and the monitor of X, which
we will call M. The attacker must choose one and only one
of these items to corrupt. In order to cause a confidentiality
or integrity attack in X, the attacker would have to choose to
corrupt X itself. However, in that case P, R, and M are all
untampered with, and the attack is caught at runtime by the
P-R-M monitor. The attacker could instead tamper with P or R
(but not both), but in either case that attack would be caught
at runtime, since P and R would disagree with each other.
The last choice is to corrupt M to cause an availability attack.
However, since M contains only one (or a few) logic gates, it is
too small to contain a cheat code or ticking time bomb. M has
so few states (usually none) and input bits (usually two) that
it can easily be verified statically by exhaustive enumeration.

B. Control Corrupter Backdoor Protection

Recall that control corrupters change the semantics of an in-
struction in flight. The same predictor/reactor scheme, used to
catch emitter attacks, works to detect control corrupter attacks,
since these attacks either cause reactions (microarchitectural
transactions) that are not predicted or prevent transactions that
are predicted. To this end, we presentDATAWATCH , the natural
extension ofTRUSTNET. DATAWATCH uses the same triangle
scheme asTRUSTNET. However, instead of transmitting indi-
vidual bits to monitors, signatures (e.g., hashes, parity bits,

TABLE I
COMPARISON OFTRUSTNET , DATAWATCH , AND SMART

DUPLICATION FOR SIMPLE, IN-ORDER MICROPROCESSORS

Attribute TRUSTNET DATAWATCH Smart Duplic.
Data Corrupter
Detection

No No Yes

Control Corrupter
Detection

No Yes Yes

Emitter Detection Yes Yes Yes
False Positives No No No
Stalls Processor No No Possibly
Area Cost Negligible Low Moderate
On-Chip Traffic Increases
Off-chip memory No effect
Backdoor source Can be identified

slices) are passed to monitors that check for equivalence. For
example, in the case of the decoder, a two bit signature is
enough to define whether an instruction involves a load, a
store, both, or neither (two bits for four cases). An equality
check on the signatures from the predictor and the reactor
is enough to confirm an on-chip invariant, namely that the
number of each type of regular memory operation that enters
the IDU equals the number of each type of memory operation
that exit the IDU. This prevents, for instance, an attack that
exfiltrates data by converting no ops into store instructions.

Data corrupter attacks change only the data that is sent in
on-chip communications. These backdoors are fundamentally
different from the types previously discussed because the
amounts and types of communications between units during
the execution of an instruction is identical to that of a correctly
functioning chip. The monitor triangle, while very efficient for
recognizing amounts and types of transactions, does not work
well for this case, because data corrupter attacks cannot berec-
ognized without duplicating some of the computational logic
that has been corrupted. For example, if the EXU (execution
unit) produces an incorrect sum, the fact that the sum is wrong
cannot be known without duplicating (or otherwise performing
the job of) the ALU (arithmetic/logic unit).

However, this type of attack has some similarities with
transient errors that can occur in microprocessors. Signif-
icant work has been done toward transient error detec-
tion [25][55][71][23] and fault tolerance, and we draw on
the principles of some of this prior work. It is sufficient in
many cases to duplicate select computational logic in orderto
protect the RTL design, since standard memory structures (e.g.,
RAMs) are not susceptible to RTL level attacks. We propose
that this type of minimal duplication, which we call ‘smart
duplication,’ can be used in a case-by-case way to protect
any units (e.g.,memory control unit) that are not covered by
the DATAWATCH system or any units that may be considered
vulnerable to data corrupter attacks. This partial duplication
allows for protection against data corrupter attacks. However,
it does this at the possible cost of processor stalls and extra
area, and as explained previously(Sec.III-C), in most domains
data corrupter attacks would likely be considered infeasible
due to the requisite of knowing the binaries that will be run
in the future during the RTL design phase. Therefore, this
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Fig. 4. Units and communication in the hypothetical inorder processor used
in this study.

technique may only be useful in a few select domains or not
at all.

Table I summarizes some of the attributes of the offered
solutions. None of the proposed solutions have a problem
with false positives (false alarms) because they use invariants
that can be easily determined statically in non-speculative,
in-order microprocessors. Extending this solution to designs
with advanced speculative techniques, such as prefetching,
may make false positive avoidance non-trivial. False negatives
(missed attacks) are only a problem if multiple signals in
the DATAWATCH technique are hashed to save space, because
two different values may hash to the same key, thus tricking
the equality checker. However, hashing is an implementation
option, which we chose to avoid because the space requirement
of the baselineDATAWATCH system is fairly low.

C. A Case Study

To demonstrate the principles of theTRUSTNET and
DATAWATCH techniques we describe how they can be applied
to a hypothetical non-speculative, in-order microprocessor.
The in-order microprocessor used in this study closely mod-
els the cores and cache hierarchy of the OpenSPARC T2
microprocessor with the exception of the cross bar network
between core and memory system, the thread switching unit,
and the chip system units such as the clock and test units.
For this study, the units in the processor core are partitioned
as described in the OpenSPARC T2 documentation and we
used the open source RTL code to identify the predictors
and reactors for each unit. The following are theTRUSTNET

monitoring triangles we implemented, categorized by the unit
being monitored:

• #1 IDU: The primary responsibility of the IDU is to decode
instructions. Predicted by the IFU and reacted to by the EXU,
the IDU monitor confirms each cycle that a valid instruction
comes out of the IDU if and only if a valid instruction entered
the IDU. This monitor detects any attack wherein the IDU
inserts spurious instructions into the stream. In the case of
branch and jump instructions, which do not go all the way
through the pipeline, the information travels far enough for the
EXU to know that a branch or jump is occurring. This monitor
can be extended to support a speculative microprocessor if the
monitor can reliably identify speculative instructions.

• #2 IFU: The primary responsibility of the IFU is to fetch
instructions. Predicted by the I-Cache and reacted to by the
IDU, this monitor confirms each cycle that a valid instruction

comes out of the IFU if and only if an instruction was fetched
from the I-Cache. This invariant catches any attack wherein
the IFU sneaks instructions into the stream that did not come
from the I-Cache. The monitor operates on the level of single
instructions as opposed to whole cache lines. While the whole
line is loaded into the I-Cache from the L2, the I-Cache knows
when individual instructions are being fetched into the IFU.
• #3 LSU: The load-store unit (LSU) handles memory refer-
ences between the SPARC core, the L1 data cache and the L2
cache. Predicted by the IDU and reacted to by the D-Cache,
this monitor confirms each cycle that a memory action (load
or store) is requested if and only if a memory instruction was
fed into the LSU. This catches shadow load or shadow store
attacks in the LSU. Our microprocessor uses write merging,
which could have been a problem, since several incoming
write requests are merged into a single outgoing write request.
However, there is still a signal each cycle stating whether or
not a load/store is being initiated, so even if several writes are
merged over several cycles, there is still a signal each cycle
for the monitoring system.
• #4 I-Cache: Predicted by the IFU and reacted to by
the unified L2 Cache, this confirms each cycle that an L2
instruction load request is received in the L2 Cache if and only
if that load corresponds to a fetch that missed in the I-Cache.
The IFU can predict this because it receives an ‘invalid’ signal
from the I-Cache on a miss. An I-Cache miss immediately
triggers an L2 request and stalls the IFU, so there is no issue
with cache line size. The IFU buffers this prediction until the
reaction is received from the L2 Cache. This catches shadow
instruction loads in the I-Cache.
• #5 D-Cache:Predicted by the LSU and reacted to by the
L2 Cache, this is the same as the monitor #4 but watches data
requests instead of instruction requests.
• #6 L2 Cache:Predicted by the I-Cache and reacted to by
MMU, this is the same as monitor #4 but is one level higher
in the cache hierarchy.
• #7 L2 Cache:Predicted by the D-Cache and reacted to by
the MMU, this is the same as monitor #5 but is one level
higher in the cache hierarchy.
• #8 D-Cache:Predicted by the LSU and reacted to by the
L2 Cache, this is the same as monitor #5 but watches writes
instead of reads. It is necessary that two separate monitors
watch reads and writes; if a single monitor counted only
the total number of reads and writes, then an attacker could
convert a write into a read unnoticed. This would cause old
data to be loaded into the cache and prevent the new value
from being written.
• #9 L2 Cache:Predicted by the D-Cache and I-Cache and
reacted to by the MMU, this confirms that line accesses in
the MMU correspond to line accesses issued by the level 1
caches. This monitor prevents shadow loads/stores executed
by the L2 Cache.

The following are theDATAWATCH monitoring triangles we
implemented, categorized by the unit being monitored:
• #10 IFU: Predicted by the IDU and reacted to by the I-
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Cache, this confirms each cycle that if the I-Cache receives
a valid PC value it is the same as the value computed in the
IFU. This required some duplication of PC logic but did not
require any extra storage. This prevents attacks wherein the
IFU maliciously changes the control flow.

• #11 Data TLB: Predicted by the checker data TLB and
reacted to by the LSU, this confirms each cycle that the outputs
of the data TLB match the outputs of the checker data TLB.
This prevents data TLB attacks, such as permissions violations
or page mis-translation. This is on the borderline of what we
would start to call ‘smart duplication’ because the ‘signatures’
are so large. However, we included this is ourDATAWATCH

implementation and simulation.

• #12 Instruction TLB:Predicted by the checker instruction
TLB and reacted to by the IFU, this is the same as monitor
#11 but for the instruction TLB rather than the data TLB.

• #13 IDU: Predicted by the IFU and reacted to by the
LSU, this confirms that the number of instructions decoded
into memory operations matches the number of memory
instructions fetched. For our microprocessor, this required that
the IFU looked at a few bits of the instruction. The monitoring
occurs at a one cycle lag, so the timing on the critical path is
unaffected. The IFU stores a few of the bits from the fetched
instruction in flip-flops until the next cycle, when a prediction
can be made with a few logical gates. For our case study, this
is the only type of control corrupter decoder attack we address.
The reason for this is that in our simple microprocessor, the
only types of signals the decoder can cause are loads in stores
(if, for example, the decoder changed an add to a subtract,
this would be a data corrupter, because it would not alter the
number of transactions in the execution unit, just the valueof
the output). In more complex microprocessors, decode units
may be responsible for more types of transactions and might
require additional monitoring triangles. When customizinga
DATAWATCH system to fit a particular design, it is important up
front to identify what types of signals each unit is responsible
for.

D. Microarchitecture and Optimizations

The microarchitecture of the predictor and monitor units are
depicted in Figure5. The predictor unit consists of (i) event
buffers for delaying the issue of tokens to the monitor and (ii)
token issue logic to determine when buffered events can be
released from the event buffers. The predictor unit requires a
small buffer because it is possible for multiple predictions to
happen before a reaction happens, and these predictions must
be remembered for that duration. These buffers can be sized
a priori to avoid overflows. The monitor itself simply checks
if events appear on the predictor and reactor inputs during the
same cycle.

1) TRUSTNET Optimization: When designing theTRUST-
NET system to catch emitter backdoors, we considered it to be
important that the monitors fit simply into the pipeline without
any complex timing or buffering issues.

Since predictions and reactions must arrive at the monitor
during the same cycle, timing must be controlled in the face of
non-determinism, which arises in all microprocessors due to
cache misses, etc. We handled this differently in the case of
the memory hierarchy and in the case of the pipeline. The
pipeline offers a natural lock-step manner for coordinating
events. If a reaction stage isN pipeline steps down from
a prediction stage, then the prediction stage has a sizeN

buffer that advances only when that stage of the pipeline
advances. Since the monitoring network advances in lock-step
with pipelined events, timing is not a problem. For example,if
the third pipeline stage wants to send a prediction to a monitor
that lies in the fifth pipeline stage, this will take two pipeline
advancements (no need for forwarding). If the third stage stalls
for any reason, the prediction also stalls and gets buffered.
When the data from the third stage reaches the fifth stage,
the prediction token will also arrive. Of course, the prediction
token should not pass through the fourth stage but should
instead remain in the prediction buffer, with a bit denoting
that it is semantically in the fourth stage.

In the case of the cache hierarchy, on the other hand, it
is necessary to know which predictions correspond to which
reactions, because it is possible for memory requests to be
handled out of order. This requires time-stamping of packets,
for example with a one byte local time signature copied from
an 8-bit modular counter.

2) DATAWATCH Optimization: A náıve solution for catching
control corrupter backdoors in TLBs (translation lookaside
buffers) is to simply have two (or more) designers design the
same TLB and compare their outputs each cycle. Since TLBs
tend to be power-hungry, highly associative structures, dupli-
cation is not a good idea. Instead of complete duplication, we
propose a new TLB microarchitecture that provides significant
protection without the costs associated with duplication.The
TLBs contain page translation and permissions informationnot
available elsewhere on chip. A TLB consists of a CAM that
translates a virtual page into a physical page, which is then
stored in a table (RAM) with the corresponding permissions
information for that physical page.
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The basic idea of our method is to create a “checker” direct-
mapped structure that has the same functionality as a TLB, the
motivation being that a direct-mapped structure uses a fraction
of the power of an associative one. The TLBs in our case study
are fully associative. We added functionality to the CAMs to
output the line number of the output. This allowed us to builda
checker TLB that uses these line numbers. Essentially, instead
of having one CAM and a direct-mapped RAM (as is normal),
we have one CAM and two direct-mapped RAMs that operate
in parallel. The CAM provides matching entries to both RAMs
in parallel. One of those RAMs communicates with the rest of
the chip while the other RAM only gives outputs to a monitor
(equality verifier). The equality check occurs at a one cycle
latency, so the values are buffered for that cycle.

Naturally, the CAM could be tampered with so that it sends
incorrect line numbers to the checker TLB. This would cause
the equality check to fail because data from one line of the
original TLB’s RAM will be compared to data from a different
line of the second RAM, causing an alarm to be thrown.
Therefore, our checker TLB turns a potential confidentiality
or integrity attack into at worst an availability attack. Wenote
that this availability attack would also be easy to catch at
verification time because the passing of the line number is
simple, combinatorial logic that can be checked by exhaustive
enumeration.

While this duplication is much more expensive than the
simpler monitor used for emitter backdoor protection, it is
much less expensive than complete duplication and offers
strong protection for a highly vulnerable unit.

E. Applications of Prior Solutions

As we mentioned briefly in the introduction, the problem
of building trusted systems from untrustworthy components
is a classic problem that has received some attention in the
systems community. A common solution used to amplify trust
in corruptible processes is to use theN -version model of
computation. The basic idea is to haveN entities perform
the same computation and compare theN outputs to check
for untrustworthy behavior. In this section, we expand on the
different ways in which this concept can be applied to micro-
processors and discuss the advantanges and disadvantages.

To deal with untrusted designers in the context of mi-
croprocessors, one option is to haveN designers createN
versions of each unit within a processor, which would all
be run continuously to check for untrustworthy behavior.
Alternately, one could run a program onN different systems
that implement the same ISA but are manufactured by different
vendors, say, boards that have x86 processors from AMD,
Intel and Centaur. The latter suffers from high power overhead
while the former suffers from both high design cost per
chip and high runtime costs. Another solution that avoids
only the runtime cost is to statically and formally check the
design units fromN designers for equivalence. This approach
increases the design cost and does not scale to large designs
or designs that are vastly different. According to the 2007
ITRS roadmap, only 13.8% of a normal microprocessor design

specification is formalized for verifiability [2]. All common
solutions to this problem appear unsatisfactory in the context
of microprocessors.

Another option is to use static verification to identify
backdoors. There has been extensive prior work on static
verification of RTL level designs [68][18][34]. Static verifi-
cation involves confirming functional equivalence betweena
behavioral level golden model (e.g., a C program) and the
RTL level design under test. The difficulty lies in the fact
that the input space for a microprocessor grows exponentially
with the number of input interfaces and the internal state size,
which makes the functional domain catastrophically large.
Exhaustive comparison is unrealistic, so the state of the art is
to use probabilistic approaches that attempt to obtain reason-
able coverage, such as equivalence checking [30][68], model
checking [30], and theorem proving [30]. These approaches
can work for small units, particularly ones with little or
no state, such as ALUs. Unfortunately, static verification is
increasingly becoming the bottleneck in the microprocessor
design process [30] and is becoming less reliable [2].

A fundamental weakness of static verification techniques
when it comes to backdoor detection is that they attempt to
use a stationary weapon to hit a moving target. Static methods
choose specific targets for comparison or invariants to confirm
about small portions of the design. Since it is reasonable to
assume that a malicious insider would have full knowledge of
the static verification technique being used, he or she would
most likely design the backdoor to avoid the space covered by
these techniques. For example, he or she would likely make
sure not to violate any of the theorems being verified and to
avoid regions being formally checked for equivalence.

V. EVALUATION

The goals of our evaluation were to: (1) study the accuracy
and coverage provided byTRUSTNET and DATAWATCH , (2)
measure the increases in on-chip network congestion from
DATAWATCH running on real programs and (3) measure the
area overheads of both mechanisms. We do not discuss per-
formance since the proposed mechanisms do not stall the
pipeline, memory system, or any other on-chip unit, and
security packets travel on a dedicated network.

A. Applicability

This section addresses the general applicability and limita-
tions of our solution, including related aspects and potential
extensions.

• Scope of our solutionOur implementation ofTRUSTNET

and DATAWATCH was designed for a simple, in-order micro-
processor. While the methodology is applicable to any in-order
microprocessor, this exact implementation only works for the
microprocessor in our case study. In order to fitTRUSTNET

andDATAWATCH to other designs, it is necessary to analyze the
units at a high level and determine what the natural predictors
and reactors are. In future work, we hope to develop a tool
that automates this process.

• Level of our solutionOur solution is at the RTL level and
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thus can only catch attacks that operate on the RTL level. Post-
RTL, circuit level attacks, such as tampering with the voltage
thresholds on certain transistors, would not be caught by our
system. Our solution covers the cores and the cache hierarchy
of the OpenSPARC T2 microprocessor but does not cover
debug/test logic or miscellanies, such as clock distribution.
Additionally, side-channel attacks are also not covered.

• Multiple attackersThe solution we implemented works only
under the assumption that at most one of the design teams
is corrupt. Our design is a triangle (complete graph of size
three). If we remove the assumption that only one of the design
subteams is corrupt and allow forn different subteams to be
corrupt and fully coordinated, then the solution must be come
more complicated.

In order for a TRUSTNET system to catchn coordinated
attackers, it is necessary to form a complete graph of size
n + 2. The premise of the system is that two honest units
must communicate with each other to compare information
and detect discrepancies. If there are at mostn+1 nodes andn
have been tampered with, then at most one of them is honest,
and the one honest node receives only invalid information.
Therefore, the size of the graph must be at leastn + 2 so
that there are at least two honest nodes. If the graph is not
complete,i.e. it is missing an edge, then it is possible that
the missing edge connects the only two honest nodes. In that
case, the two honest nodes receive only invalid information.
Therefore, the graph must be complete. Since complete graphs
contain n(n+1)

2 bidirectional edges, theTRUSTNET solution,
when extended ton attackers for a microprocessor withu
units, has a fundamental communication overhead ofn(n +
1)u ∝ n

2
u.

The conclusion is that even thoughTRUSTNET and
DATAWATCH are generalizable for multiple, coordinated at-
tacking subteams, they do not scale well. We present this
generalized scheme only for completeness.

• Alarms The decision of how to handle an alarm is domain
specific and not a fundamental aspect of our monitoring
system. However, we present initial suggestive thoughts on
what might be done with an alarm. In our experimental
implementation, the alarm was simply recorded and not used
for any corrective actions.

The simplest response to an alarm is to kill the defective
processor, which turns a confidentiality or integrity attack into
an availability attack. In highly secure domains, this may
be desirable to guarantee no exfiltration of sensitive data.
Additionally, in a heterogeneous processor (diversity) setting,
it may be desirable to kill the defective core. We also note that
using theTRUSTNET and DATAWATCH infrastructure has the
potential to greatly simplify the task of making microproces-
sors tamper corrective. If an alarm is sounded, the problem can
be corrected by rolling back to the last committed instruction.
Additionally, the instruction that was in flight in the corrupted
unit can be flagged as a cheat code and logged for future
execution. This approach would be analogous to a honeypot.

• Extensions to General MicroprocessorsThere are several

TABLE II
EXPERIMENTAL INFRASTRUCTURE

Instruction Set Sun SPARC
Microarchitecture

Instruction sup-
ply

16KB, 8-way 1R/1W L1 I cache, 64-entry FA
I-TLB (both 2-cycle access, 52 cycles on TLB
miss), No branch prediction, stall until branch
resolution.

Execution Single issue, 1 INT ALU, T2 SPARC register
windows.

Data supply 8KB, 4-way L1 D cache 1RW, 128-entry FA
DTLB (both 3 cycle access, 53 cycles on TLB
miss, write-back policy), unified 4 MB, 16-way
L2 cache, 1 RW (both 12 cycle access, write-
back policy), Unlimited main memory at 250
cycle access latency.

Pipeline Stages Fetch, Cache, Pick, Decode, Execute, Read,
Bypass, Writeback.

Benchmarks bzip2, gcc, mcf, gobmk, hmmer, test inputs,
base compiler optimizations, SPARC compiler

ways to generalize theTRUSTNET and DATAWATCH architec-
ture, and each way poses challenges for future work. The
multi-threaded case is a relatively simple generalizationthat
can be implemented by making the packetsn-wide for an
n-threaded core. Assuming one thread is not supposed to
alter the microarchitectural transactions of another thread, the
n-wide packet can function semantically asn independent
monitors. The out-of-order case is more complicated as it
requires our mechanisms to be extended to handle reorder-
ing of in-flight predictor/reactor tokens. Handling speculative
techniques would also require extensions, though we believe
that the principles of our system can be applied to work in this
case without any false alarms by identifying what the lifetime
of an instruction is (whether it is prefetched, speculated or
committed) and monitoring it for that lifetime. There are other
advanced features of modern microprocessors, and each may
warrant its own attention in future work. For example, some
microprocessors have a privileged or supervisor state thatis
separate from the permissions governed by the TLB. Such
additions would open the door for control corrupter attacks
and would warrant additional monitoring triangles.

B. Evaluation Methodology

We demonstrate our design on a simplified model of Sun
Microsystems’ OpenSPARC T2 microarchitecture. We chose
this architecture and instantiation because it is the only
“industrial-strength” hardware design that is also available as
open source. While our experiments and analysis were per-
formed on our simulated core, based on the OpenSPARC T2
microprocessor design, we use nothing unique to that design,
and we believe our techniques can in principle be applied to
any microprocessor that has memory hierarchy and pipelines.
In our case study, we used the RTL hardware implementation
(1) to construct well-formed, meaningful attacks to test the
resiliency of the system and (2) to systematically determine
the number of on-chip units that can be covered by our design.
In addition, to measure congestion, similar to many computer
architecture studies, we use a cycle-accurate simulator that
exactly models one core of our microprocessor. The details
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of our simulation infrastructure are summarized in TableII .
We implemented all theTRUSTNET andDATAWATCH monitor
triangles discussed in this paper (TablesIII , IV) including the
partially duplicated TLBs.

C. Attack Space Coverage

To determine how goodTRUSTNET andDATAWATCH are at
protecting against attacks on microprocessors, we first need
to measure the microprocessor attack/vulnerability space. To
measure the attack/vulnerability space, we observe that an
on-chip unit is only vulnerable to backdoors in-so-far as its
interfaces are threatened. What goes on inside the unit doesn’t
matter so long as everything that goes in and out of it is correct.
If all inputs and outputs are the same as in an uncorrupted
chip, then there is no problem, because there has been no
corruption or exfiltration of data. Therefore, to identify the
points of vulnerability, we record the interfaces between on-
chip units. The efficacy of our solution is then determined
by whether or not these interfaces are protected from attacks
using TRUSTNETand DATAWATCH .

Figure 6 (A,B,C,D) shows the distribution of shared in-
terfaces between units within the overall chip, the processor
core, the memory elements and system elements respectively,
in the RTL implementation of the OpenSPARC T2. Each
measurement in the grid represents the number of signals that
enter and leave a unit within the processor. All communication
is normalized to the unit that has the highest communication.
Very small bars (below 0.1) signify connections that are not
part of instruction processing, but rather contain miscellaneous
information, such as power settings, clock distribution, etc
(attacks on these may be possible at fabrication,e.g., mis-
clocking a certain unit, but would be diffcult at the RTL code
level). Most of these miscellaneous signals are not presentin
our case study. Thus, the microprocessor in our case study is
somewhat simpler than a real OpenSPARC T2 and lacks some
of the less central features, such as power management and
floating point operations.

As can be seen from TablesIII and IV, that describe known
emitter and corrupter monitors respectively, and Figure6,
that describes all the interfaces, that all of the units in the
core that have significant communications (more than 0.1) are
monitored by TRUSTNET and DATAWATCH . For this study,
we used manual analysis to identify which signals on the
interfaces can be altered to cause emitter and control corrupter
attacks to verify thatTRUSTNET and DATAWATCH can cover
these signals. Based on this analysis, most of the vulnerable in-
terfaces can be protected against the known attacks. However,
our manual analysis may have failed to exhaust all possible
attack scenarios; in future work, we hope to automate this
process to guarantee full coverage.

While TRUSTNET and DATAWATCH cover the processor
cores and the cache hierarchy against the emitter and control
corrupter attacks we identified, we did not cover the float-
ing point logic, memory controller units, crossbars and the
miscellaneous logic. We believe that formal verification can
be used to cover floating point logic as is already in vogue.

Similarly, we beleive that the crossbar in our case study is
simple enough to be amenable to formal verification. We are
not sure if our strategy can cover the miscellaneous logic such
as power management unit and the stream processing unit (we
have not had time to understand the implementation) but these
units have very little contact with other units on chip (less
than 0.1 normalized), and we believe it is unlikely that they
will significantly increase attack vulnerability. The difficulty
with covering the MCU withTRUSTNET is that the MCU
communicates with only the main memory and that there is
nothing on-chip that can serve as a reactor. The simplest wayto
handle this special case would be to duplicate the MCU control
logic, which serves the same purpose as complete duplication
but without increasing memory bandwidth.

D. Attacks and Detection

Based on our study of the OpenSPARC T2 RTL, we con-
structed the emitter and control corrupter attacks described in
TableV and injected the attacks into our simulator to measure
the percentage of false negatives and false positives. We did
not implement the data corrupter attacks. These attacks, such
as the one which alters the address of an otherwise valid load,
are situations where some logic duplication may be required.
In this case, the address (or a hash of the address) could be
forwarded to make sure it has not been altered. However, this
was not done in our implementation, which protected only
against emitter and control corrupter attacks. As stated earlier,
we also did not take any corrective or rollback measures with
alarms; we only recorded them.

As was expected, all emitter and control corrupter attacks
were caught in all cases. This is very important because it
demonstrates that our system provides coverage for all of the
units we applied it to and for various types of attacks. We
also measured the overall accuracy of our solution with no
attacks, as measured by the percentage of the cycles in which
there are no false positives thrown. For all tests run, no false
positives occurred. It is vital that there are no false positives
and no false negatives because the latter would be a breach
of security and the former would cripple the system.

E. Traffic

SinceTRUSTNET andDATAWATCH do not stall the pipeline
or otherwise increase computational cycles, the most relevant
cost of the system is the increase in on-chip network traffic.
This increase depends on the architecture, but it can be
bounded in general if we assume a cache hierarchy and one
or more pipelined computational units. The total amount of
traffic in the worst case is bounded above as per the following
equation:

traffic ≤ 2 ∗ (MemoryOps∗ MemoryMonitors

+ Instructions∗ PipelineMonitors)

The factor of two comes from the fact that each monitoring
event consists of two packets - a prediction and a reaction.
This is a loose upper bound, and we expect real programs
to produce far less than this much traffic. However, this upper
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TABLE III
DESCRIPTIONS OF THE EMITTER PROTECTION MONITORS FOR OUR IMPLEMENTATION

Monitored Unit Predictor Reactor Invariant Example of attack thwarted

IDU IFU EXU # of instructions in = # of instructions out IDU stalls the fetch unit and sends ma-
licious commands to the EXU

IFU I-Cache IDU # of instructions in = # of instructions out IFU sends spurious instructions to the
IDU

LSU IDU D-Cache # of Memory ops issued = # of Memory ops
performed

LSU performs shadow loads

I-Cache IFU L2 Cache # of requested L2 instructions = # of IFU requests
that miss

I-Cache returns spurious instructions to
IFU while waiting on the L2 Cache

L2 Cache I-Cache MMU # of requested instructions from memory = # of
I-Cache requests that miss in L2

L2 Cache returns spurious instructions
while waiting on main memory

D-Cache LSU L2 Cache # of requested L2 data = # of LSU requests that
miss

D-Cache returns fake data while waiting
on the L2 Cache

L2 Cache D-Cache MMU # of requested data from memory = # of D-Cache
requests that miss in L2

L2 Cache returns spurious data while
waiting on main memory

D-Cache LSU L2 Cache # of L2 cache lines written = # of LSU line writes
issued

D-Cache sends write to L2 cache un-
prompted

L2 Cache D-Cache MMU # of Memory lines written = # of D-Cache line
writes issued

L2 sends write to memory unprompted

Legend: IDU = decode unit, IFU = fetch unit, LSU = load/store unit, I-Cache = instruction cache, D-Cache = data cache, L2 Cache = unified L2 cache

TABLE IV
CORRUPTER PROTECTION MONITORS

Monitored Unit Predictor Reactor Invariant Example of attack
thwarted

Type of signature

IFU IDU I-Cache PC received = PC computed IFU branches incorrectly Eight bit signature
D-TLB Checker D-TLB LSU TLB output = checker TLB output TLB violates permissions Full permissions and

translation
I-TLB Checker I-TLB IFU TLB output = checker TLB output TLB violates permissions Full permissions and

translation
IDU IFU LSU Memory ops issued = memory ops per-

formed
Decoder causes shadow
load/store

Two bit signature

Legend: IFU = fetch unit, IDU = decode unit, TLB = translationlookaside buffer, LSU = load/store unit, I-Cache = instruction cache

bound demonstrates our design’s scalability. This linear scaling
with the IPC and the pipeline depth is optimal (up to constant
factors) given that we want to monitor every pipeline stage
and every instruction.

We experimentally measured how much monitoring network
traffic is generated by real programs with two questions in
mind: (1) Are there programs that create floods of traffic (near
the worst-case bound)? (2) Do high-level differences between
programs affect the amount of traffic caused by our monitors?
Our expectation was that the different programs would have
little impact on the amount of traffic produced by the monitors.
As Figure7 shows, the differences between programs do not
significantly impact the EPC (events per cycle) of our system.
Figure 7 displays the number of communications per cycle
sent betweenTRUSTNET monitors during executions of SPEC
integer benchmarks. These numbers are deterministic because
the monitors behave deterministically and the instructions are
in order. The traffic generated is relatively low (always less
than 2 per cycle). It is also stable across the benchmarks
(between 1.1 and 1.2). This supports our belief that a single
model works for all programs and that program adaptive
features would be unnecessary. These numbers would be
higher for a program that, for example, consisted of only
store instructions or only branch instructions, but we do not
anticipate such behavior in real programs.

F. Area Estimates

In this section, we provide bounds on the general area cost
of TRUSTNET and DATAWATCH and estimate the cost of the
implementation in our case study. We use bytes of storage as
our metric because the computational logic required is trivial
(XORs, buffer logic, or equality check over a few bits).

The area cost of our monitors comes from the fact that an
event must be stored by the monitoring system from the time
it reaches the predictor to the time it reaches the reactor. In
complex processors, this time can be variable. It is necessary
to have buffers large enough to store all events that are still
incomplete. This number depends on the architecture but is

Fig. 7. Events per cycle created by theTRUSTNET monitoring scheme
for SPEC benchmarks. An event is any communication between two on-chip
units. A prediction and a reaction count as two separate events.
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Fig. 6. An overview of the communications that occur in a real OpenSPARC T2 microprocessor. (A) displays a partition of the microprocessor into four
basic parts: ’System’ includes interfaces, clock generators, and other system level features. ’Memory’ cache banks, non-cacheable units, and other memory
structures. The core represents one processor core (there are eight cores in all). The crossbar coordinates communications between the cores and the cache
banks (which are partitioned on chip). (B), (C), and (D) showinternal communications going on within the system, memory, and cores.

known a priori for a given microprocessor. Therefore:

BufferPackets≤ MaxMemoryRequests

+ MaxInstructionsInPipeline

In the single-issue, in order case, each packet is a single
bit. Additionally, if there areN threads sharing a pipeline, the
data must beN bits wide instead of one, so that no thread-
swapping attacks are possible. So in general:

Area≤ (MaxMemoryRequests

+ MaxInstructionsInPipeline) ∗ PacketSize

Specifically,TRUSTNET as described in TableIII , employs
nine different triangles. It is sufficient to use a one byte
prediction buffer for each triangle at the input (although in
most cases less would suffice). Analysis of an OpenSPARC
T2 core shows that it is impossible for a one byte prediction
buffer (eight slots) to overflow. This makes a total of at most
nine bytes of storage. Using maximal scalingi.e.,conservative
scaling with no microarchitectural optimizations, would re-
quire9∗8 = 72 bytes to cover an eight-threaded OpenSPARC
T2 core. An OpenSPARC T2 chip, which contains eight
cores, would require eight copies ofTRUSTNET for a total
of 72 ∗ 8 = 576 bytes of storage.

DATAWATCH , as described in TableIV, employs four addi-
tional triangles on top ofTRUSTNET. The two triangles for
the pipeline use eight-wide prediction buffers of one byte
signatures, for a total of eight bytes each. If we create the two
triangles on all eight cores, that makes2 ∗ 8 ∗ 8 = 128 total
bytes of storage. Including the duplicate direct-mapped TLBs
(both data and instruction) adds a total of128 + 64 = 192
duplicated TLB entries. If we do this for each of the eight
cores and give each line a generous 9 bytes of storage, this
adds8 ∗ 9 ∗ 192 = 13824 bytes of storage. ThenDATAWATCH

uses a total of128 + 13824 = 13952 bytes of storage on top
of TRUSTNET, for a total of13952+576 = 14528 bytes, or a
little under 15 KB of storage (total for 8 cores and the cache
hierarchy).

VI. CONCLUSION

One of the long-standing classic problems in systems se-
curity is “How to build trustworthysystemsfrom untrust-
worthy components?” In this paper we study and propose
a solution for a variant of the problem: “How to build
trustworthymicroprocessorsfrom untrustworthy components
built by untrusted designers?” Since all software and hardware
is under the control of microprocessors, establishing trust in
microprocessors is a critical requirement for establishing trust
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TABLE V
SOME HYPOTHETICAL ATTACKS ON AN INORDER MICROARCHITECTURE. THESE ATTACKS WERE CONCEIVED BY MANUAL ANALYSIS OF THE

OPENSPARC T2 RTL (INSPIRED BY [36]) AND IMPLEMENTED IN A SIMULATOR TO TEST OUR DESIGNS. THIS ARRAY OF ATTACKS THREATENS EVERY

PIPELINE STAGE AS WELL AS THE MEMORY SYSTEM. THESE ATTACKS CAN VIOLATE CONFIDENTIALITY, INTEGRITY, AND AVAILABILITY . ONLY THE

EMITTER AND CONTROL CORRUPTER ATTACKS WERE IMPLEMENTED IN OUR CASE STUDY. THE DATA CORRUPTER ATTACKS ARE DISCUSSED IN THIS

PAPER AND PROVIDED HERE FOR REFERENCE BUT WERE NOT IMPLEMENTED.

OpenSPARC
Unit

Attack Possible User Level Effect Backdoor Type Protection

IFU Fetch instruction from
wrong address

Fetch a malicious program instead of the one the OS intends.Control Corrupter #10

IFU Fetch extra instructions Fetch a malicious program in addition to the one the OS
intends

Emitter #2

IDU Emit spurious instructions Emit a spurious load or store to private information Emitter #1
IDU Transform no-op into load or

store
Allow inappropriate load or store Control Corrupter #13

ITLB Translate pages incorrectly Translate a valid load into a load from a malicious programControl Corrupter #12
ITLB Change or Ignore permis-

sions
Allow loading from pages without permissions Control Corrupter #12

IL1 Loads wrong instruction Fetch a malicious program instead of the one the OS intendsData Corrupter duplic
IL1 Loads extra instruction Fetch a malicious program in addition to the one the OS

intends
Emitter #4

EXU Incorrect operation ALU produces incorrect output; Widespread damage Data Corrupter verif. V-C
EXU Incorrect operation Compute wrong address Data Corrupter verif. V-C
LSU Loads/Stores extra data Load/store private information Emitter #3
DL1 Loads extra data Load private information Emitter #5#8
DL1 Loads from wrong location

in UL2
Load private information Data Corrupter duplic.

DL1 Stores extra data Exfiltrate private information Emitter #5#8
UL2 Loads extra data Load private information Emitter #6#7#9
UL2 Loads from wrong location

in RAM
Load private information Data Corrupter duplic.

UL2 Loads/Stores extra data Overwrite OS critical information Emitter #6#7#9
MC Loads/Stores extra data Overwrite OS critical information Emitter IV-A
DTLB Translates data location in-

correctly
Translate a valid load into a load of private information Control Corrupter #11

DTLB Change permissions Allow loading from pages without permissions Control Corrupter #11
DTLB Ignores permissions Allow loading from pages without permissions Control Corrupter #11

in computing bases.

We classified the set of possible RTL level design attacks
into three categories and explained the trade-offs betweeneach
of the categories. We proposed as a solution to the untrusted
microprocessor designer problemTRUSTNET, a dynamic ver-
ification engine that continuously monitors communications
to detect violations of deterministic communication invariants
between on-chip units.TRUSTNET keeps track of microarchi-
tectural events required to execute an instruction and reports
a discrepancy when a microarchitectural unit does more or
less work than is expected. We also propose a more robust
system,DATAWATCH , which watches not only the amount of
events that happen but also the type of events that happen.
Within these two systems, each unit within a processor is
monitored by two other units, a predictor unit and reactor unit.
The predictor unit supplies inputs to the actor unit and reactor
unit receives outputs from the actor. By tracking predictions
and reactions,TRUSTNET and DATAWATCH detect malicious
modifications to a chip.

TRUSTNET and DATAWATCH are capable of detecting ma-
jor categories of microprocessor attacks without complete
replication (a classic textbook solution for such problems)
at low design complexity, for a small area investment, and
with no performance impact. Based on our evaluation of the
OpenSPARC T2 RTL, we determined thatTRUSTNET takes

up less than 1 KB of storage to catch emitter attacks. We
also determined thatDATAWATCH can protect the cores and
the cache hierarchy from known emitter and control corrupter
attacks at the cost of less than 2 KB of storage per processor
core. Lastly, we discussed how logic in the rest of the design
can be duplicated in order to provide more robust coverage
for high security domains at a fraction of the cost of complete
duplication (the current state of practice).

The ideas behindTRUSTNET viz. using the causal structure
of microarchitectural operations in concert with the division
of work between processor units, opens up exciting opportu-
nities to optimize over traditional techniques used to improve
reliability and availability of microprocessors. For instance,
TRUSTNET and DATAWATCH like infrastructure may be used
to detect transient faults and for dynamic verification without
traditional duplication or diversity based techniques.
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End-to-end register data-flow continuous self-test.SIGARCH
Comput. Archit. News, 37(3):105–115, 2009.

[24] R. Chakraborty, S. Paul, and S. Bhunia. On-demand trans-
parency for improving hardware trojan detectability. In
Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop on, pages 48–50, June 2008.

[25] S. Chatterjee, C. Weaver, and T. Austin. Efficient checker
processor design. InMICRO 33: Proceedings of the 33rd an-
nual ACM/IEEE international symposium on Microarchitecture,
pages 87–97, New York, NY, USA, 2000. ACM.

[26] R. P. Colwell. The Pentium Chronicles: The People, Passion,
and Politics Behind Intel’s Landmark Chips (Software Engi-
neering ”Best Practices”). Wiley-IEEE Computer Society Pr,
2005.

[27] J. Coron. Resistance against Differential Power Analysis for
Elliptic Curve Cryptosystems. In C. K. Koc and C. Paar, editors,
Proceedings of the1st Cryptographic Hardware and Embedded
Systems, pages 292–302, August 1999.

[28] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, and
S. Smith. Building the ibm 4758 secure coprocessor.Computer,
34(10):57–66, Oct 2001.

[29] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally,
and L. Torres. Hardware mechanisms for memory authentica-
tion: A survey of existing techniques and engines. pages 1–22,
2009.

[30] F. Ferrandi, F. Fummi, G. Pravadelli, and D. Sciuto. Identifi-
cation of design errors through functional testing.Reliability,
IEEE Transactions on, 52(4):400–412, Dec. 2003.

[31] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic
Analysis: Concrete Results. InProceedings of3rd International
Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 251–261, 2001.

[32] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon
physical random functions. InACM Conference on Computer
and Communications Security, pages 148–160, New York, NY,
USA, 2002. ACM Press.

[33] T. Harada, H. Sasaki, and Y. Kami. Investigation on radiated
emission characteristics of multilayer printed circuits boards.
IEICE Transactions on Communications, E80-B(11):1645–
1651, 1997.

[34] Y. Huang, R. Guo, W.-T. Cheng, and J. C.-M. Li. Survey of
scan chain diagnosis.IEEE Design and Test of Computers,
25(3):240–248, 2008.

[35] IBM. IBM 4764 PCI-X Cryptographic Coprocessor.
[36] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and

Y. Zhou. Designing and Implementing Malicious Hardware.
In Proceedings of the1st USENIX Workshop on Large-scale
Exploits and Emergent Threats, April 2008.

[37] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
pages 388–397. Springer-Verlag, 1999.

[38] O. Kömmerling and M. G. Kuhn. Design Principles for Tamper-
Resistant Smartcard Processors. InProceedings of the USENIX
Workshop on Smartcard Technology, pages 9–20, May 1999.

[39] B. W. Lampson. A Note on the Confinement Problem.Com-
munications of the ACM, 16(10), 1973.

[40] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated
circuits for identification and authentication application. In
Proceedings of the Symposium on VLSI Circuits, pages 176–
159, 2004.

15

http://www.anandtech.com/showdoc.aspx?i=3230&p=4
http://www.anandtech.com/showdoc.aspx?i=3230&p=4
http://www.edn.com/blog/1690000169/post/290028029.html
http://www.edn.com/blog/1690000169/post/290028029.html
https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org/


[41] J. Li and J. Lach. At-speed delay characterization for ic
authentication and trojan horse detection. InHardware-Oriented
Security and Trust, 2008. HOST 2008. IEEE International
Workshop on, pages 8–14, June 2008.

[42] S. Mangard. Exploiting radiated emissions - EM attacks on
cryptographic ICs. InProceedings of AustroChip, 2003.

[43] S. Mangard, E. Oswald, and T. Popp.Power analysis attacks:
Revealing the secrets of smart cards. Springer-Verlag, Secaucus,
NJ, USA, 2007.

[44] V. Marchetti and J. Marks.The CIA and the Cult of Intelligence.
Knopf, 1974.

[45] J. Markoff. Old Trick Threatens the Newest Weapons.http://
www.nytimes.com/2009/10/27/science/27trojan.html?r=1/.

[46] G. McFarland.Microprocessor Design. McGraw-Hill, Inc., New
York, NY, USA, 2006.

[47] E. D. Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Preneel,
G. Vandenbosch, and I. Verbauwhede. Electromagnetic Anal-
ysis Attack on an FPGA Implementation of an Elliptic Curve
Cryptosystem. InProceedings of EUROCON, November 2005.

[48] M. Neve, J. P. Sefert, and Z. Wang. A Refined Look at
Bernstein’s AES Side-channel Analysis. InProceedings of the
ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCS), page 369, March 2006.

[49] M. Neve and J. P. Seifert. Advances on Access-driven Cache
Attacks on AES. InProceedings of Selected Areas of Cryptog-
raphy (SAC), 2006.

[50] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and
Countermeasures: the Case of AES. Cryptology ePrint Archive,
Report 2005/271, 2005.

[51] D. A. Osvik, A. Shamir, and E. Tromer. Other People’s Cache:
Hyper Attacks on HyperThreaded Processors. Presentation
available athttp://www.wisdom.weizmann.il/∼tromer/.

[52] C. Percival. Cache Missing for Fun and Profit.http://www.
daemonology.net/papers/htt.pdf.

[53] J. J. Quisquater and D. Samyde. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. In
Proceedings of the International Conference on Smart Cards:
Smart Card Programming and Security (E-smart), pages 200–
210, 2001.

[54] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic. Power
supply signal calibration techniques for improving detection
resolution to hardware trojans. InICCAD ’08: Proceedings of
the 2008 IEEE/ACM International Conference on Computer-
Aided Design, pages 632–639, Piscataway, NJ, USA, 2008.
IEEE Press.

[55] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection
via simultaneous multithreading. InISCA ’00: Proceedings of
the 27th annual international symposium on Computer archi-
tecture, pages 25–36, New York, NY, USA, 2000. ACM.

[56] K. Rosenfeld and R. Karri. Attacks and defenses for jtag.
Design & Test of Computers, IEEE, 27(1):36–47, Jan.-Feb.
2010.

[57] H. Salmani, M. Tehranipoor, and J. Plusquellic. New design
strategy for improving hardware trojan detection and reducing
trojan activation time. InHardware-Oriented Security and Trust,
2009. HOST ’09. IEEE International Workshop on, pages 66–
73, July 2009.

[58] H. Saputra, N. Vijaykrishnan, M. Kandemir, M. Irwin,
R. Brooks, S. Kim, and W. Zhang. Masking the Energy
Behavior of DES Encryption. InProceedings of the Design
Automation and Test in Europe Conference (DATE), 2003.

[59] S. R. Sarangi, A. Tiwari, and J. Torrellas. Phoenix: Detecting
and recovering from permanent processor design bugs with
programmable hardware. InMICRO 39: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 26–37, Washington, DC, USA, 2006. IEEE
Computer Society.

[60] A. Shamir and E. Tromer. Acoustic cryptanalysis: On nosy
people and noisy machines.http://people.csail.mit.edu/tromer/
acoustic/.

[61] S. Smith. Magic boxes and boots: Security in hardware.IEEE
Computer, 37(10):106–109, 2004.

[62] G. E. Suh and S. Devadas. Physical unclonable functions for
device authentication and secret key generation. InDesign
Automation Conference, pages 9–14, New York, NY, USA,
2007. ACM Press.

[63] K. Tiri, O. Aciicmez, M. Neve, and F. Andersen. An Analytical
Model for Time-Driven Cache Attacks. InProceedings of the
Fast Software Encryption Workshop (FSE), March 2007.

[64] K. Tiri and I. Verbauwhede. A VLSI Design Flow for Secure
Side-Channel Attack Resistant ICs. InDATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe,
pages 58–63, March 2005.

[65] K. Tiri and I. Verbauwhede. Design Method for Constant Power
Consumption of Differential Logic Circuits. InProceedings of
Design, Automation and Test in Europe Conference (DATE),
pages 628–633, March 2005.

[66] K. Tiri and I. Verbauwhede. A Digital Design Flow for Secure
Integrated Circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 25(7):1197–
1208, July 2006.

[67] United Stated Department of Defense.High performance
microchip supply, February 2005.

[68] S. Vasudevan, V. Viswanath, J. A. Abraham, and J. Tu. Sequen-
tial equivalence checking between system level and rtl descrip-
tions. Design Automation for Embedded Systems, 12(4):377–
396, 2008.

[69] I. Verbauwhede, K. Tiri, D. Hwang, A. Hodjat, and P. Schau-
mont. Circuits and Design Techniques for Secure ICs Resistant
to Side-Channel Attacks. InProceedings of the International
Conference on IC Design & Technology (ICICDT), pages 1–4,
May 2006.

[70] X. Wang, M. Tehranipoor, and J. Plusquellic. Detecting mali-
cious inclusions in secure hardware: Challenges and solutions.
In Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop on, pages 15–19, June 2008.

[71] J. Yoo and M. Franklin. Hierarchical verification for increasing
performance in reliable processors.J. Electron. Test., 24(1-
3):117–128, 2008.

[72] M.-D. M. Yu and S. Devadas. Secure and robust error correction
for physical unclonable functions.Design & Test of Computers,
IEEE, 27(1):48–65, Jan.-Feb. 2010.

16

http://www.nytimes.com/2009/10/27/science/27trojan.html?_r=1/
http://www.nytimes.com/2009/10/27/science/27trojan.html?_r=1/
http://www.wisdom.weizmann.il/~tromer/
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
http://people.csail.mit.edu/tromer/acoustic/
http://people.csail.mit.edu/tromer/acoustic/

	Introduction
	Related Work
	Threat Model
	Assumptions
	Attack Triggers
	Backdoor Types

	Principles for Microprocessor Protection
	Emitter Backdoor Protection
	Control Corrupter Backdoor Protection
	A Case Study
	Microarchitecture and Optimizations
	TrustNet Optimization
	DataWatchOptimization

	Applications of Prior Solutions

	Evaluation
	Applicability
	Evaluation Methodology
	Attack Space Coverage
	Attacks and Detection
	Traffic
	Area Estimates

	Conclusion
	Acknowledgements

