Neural-Augmented Static Analysis of Android Communication

Jinman Zhao University of Wisconsin-Madison jz@cs.wisc.edu Aws Albarghouthi
University of Wisconsin-Madison
aws@cs.wisc.edu

Vaibhav Rastogi University of Wisconsin-Madison vrastogi@cs.wisc.edu

Somesh Jha
University of Wisconsin-Madison
jha@cs.wisc.edu

Damien Octeau Google docteau@google.com

Presented by Joshua Learn

Android App Communication Link Discovery

- Applications on the mobile Android platform have the ability to communicate
 - Ex: use external messaging app to send SMS message from within your app
- These communication links can cause huge security vulnerabilities through taking advantage of the user privileges granted to an application
- Problem: detect if communication is possible between two application via static analysis
- Static analysis of large, complex applications is difficult and leads to many reported false positives

Inter-Component Communication (ICC)

- Android Apps communicate with a message system called Inter-Component Communication
- ICC Abuse causes many security vulnerabilities
 - Ex: Bus application broadcasting GPS location to all other applications
 - Ex: SMS spying app disguised as tip calculator
- We want to answer the question: Can component c communicate with component d?
- Process is called <u>link inference</u>

ICC Overview: Intents and Filters

- Intent used to initiate messages
 - Explicit
 - Target component specified
 - Implicit
 - Functionality specified
 - Action string: action to be performed
 - Set of category strings: additional info about what to do with the intent (ex: "BROWSABLE" - app handling action can open request in a web browser)
 - Set of data fields: data to be acted upon
- Filter used to convey willingness to receive intents
 - Actions: set of strings of accepted intent actions
 - Categories: set of strings of accepted intent categories
 - Data descriptors: descriptions of accepted data fields

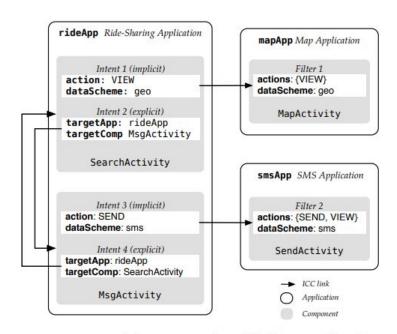
Link Inference

- IC3 is a tool created for Android ICC analysis
- Uses static analysis to infer values of intents and filters
- Inferred values can be used to detect potential links (PRIMO)
- Three possible results:
 - Definite yes: confirmed link between two apps
 - Definite no: confirmed NO link between two apps
 - Maybe: possibility of link exists
- Complex applications yield a high rate of "maybe"s
- Disambiguating "maybe"s is the goal

Relevant Research: PRIMO

- Octeau et al. published probabilistic models for analysing false positives
- Models are handcrafted
- Model creation is months long
- Required deep domain knowledge
- Specific to current Android programming framework
- Includes matching procedure for detecting links between abstract intents/filters

Example



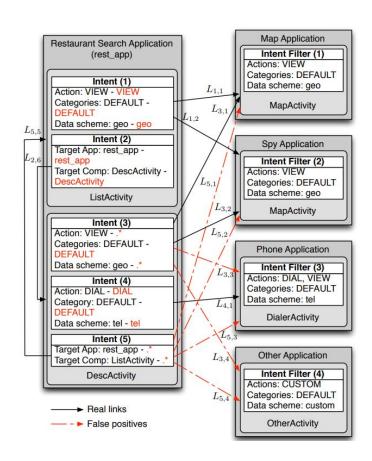
(a) ICC example with three applications

```
public void sendImplicitIntent() {
   Intent intent = new Intent():
   intent.setAction("SEND");
   msq = ... // contains phone # and msq
   intent.setData(msg);
   startActivity(intent);}
Code constructing and starting implicit intent
<intent-filter>
 <action android:name="SEND"/>
 <action android:name="VIEW"/>
 <data android:scheme="sms"/>
 <category android:name="DEFAULT"/>
</intent-filter>
Intent filter for a SMS component
```

(b) Intent for sending an sms and associated filter

Figure 2: ICC Example

Vulnerability Example



Formalized Intents and Filters

Intents

- Pair (act, cats) where
 - $act \in \Sigma^* \cup \{NULL\}$
 - $cats \in 2^{\Sigma^*}$
- act is a string or null representing the action
- cats is the set of strings representing the categories
 - Given no category, cats is just the singleton set {"DEFAULT"}

Filters

- o Pair (acts, cats) where
 - $acts \in 2^{\Sigma^*}$
 - $cats \in 2^{\Sigma^*}$
- o acts is the set of strings representing the actions
- cats is the set of strings representing the categories

Abstract Intents and Filters

- Static analysis techniques used yield abstract intents and abstract filters
 - o Programmatic creation of intents and filters can lead to many different possibilities at runtime
 - Represent a potentially infinite set of intents/filters through regular expressions
- Abstract versions have same representation structure
 - All strings are regular expressions
 - Ex act: ("(.*)SEND", {"DEFAULT"}) is intent where action has suffix "SEND"
- For every intent/filter in an application, there will be an abstract intent that matches it

Abstract Matching Function

PRIMO paper offers procedure that infers links:

```
match#: I^{\#} \times F^{\#} \rightarrow \{0, 1, \top\}
```

- Takes an abstract intent and filter
- Yields yes, no, or maybe
- Goal: disambiguate the maybes

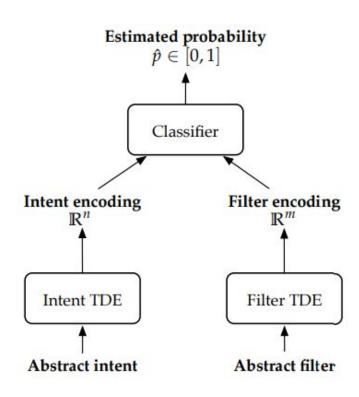
Link Inference as a Classification Problem

Classifier function:

h:
$$I^{\#} \times F^{\#} \rightarrow [0, 1]$$

- Indicates the probability that a link exists $(h(i^{\#}, f^{\#}) = p(y | i^{\#}, f^{\#}))$
- Created using Link Inference Neural Network (LINN)
 - Training data: non-maybe labels gathered from static analysis

Link-Inference Neural Network



Type-Directed Encoders

- Need some sort of input representation for abstract intents/filters
- Intents/Filters can be seen as compound data types (sets of strings, unions of strings and null, etc.)
- Type-Directed Encoders recursively encode compound data types
- Encoder of type τ to an n dimensional vector:

$$g: \tau \to \mathbb{R}^n$$

Encoding functions are Neural Networks jointly trained with the classifier

Encoding Base Types

- Real Numbers
 - already a real number, no encoding needed
- Categories
 - Finite number of possible values (characters, booleans, etc.)
 - Encode k categories into n-dim vector by lookup table $\mathbf{w} \in \mathbb{R}^{n \times k}$
 - Encoding for jth category is the jth column of w
 - Achieved using an embedding layer in the neural net
 - Allows us to choose dimensionality of output vector and capture meaning between categories

Encoding Compound Types

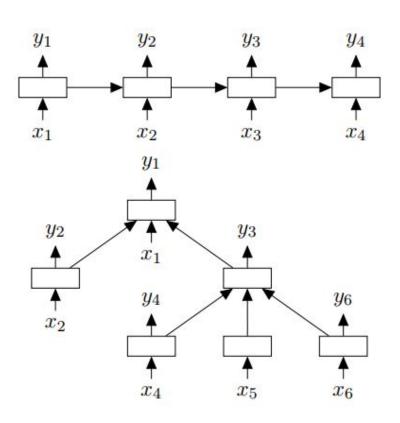
- Lists
 - flat function
 - trained as CNN or LSTM
- Sets
 - aggr function
 - Sum of vectors or Child-sum tree-LSTM
 - No ordering so treated differently than lists
- Products
 - o comb function
 - MLP or Tree-LSTM unit
- Sums
 - Chooses which encoder to use based on type

Encoding functions

Encoding functions

Encoder	Type	Possible differentiable implementations
enumEnc	$\Sigma \to \mathbb{R}^l$	Trainable lookup table (embedding layer)
flat	$L(\mathbb{R}^n) \to \mathbb{R}^m$	CNN / LSTM
aggr	$S(\mathbb{R}^n) \to \mathbb{R}^m$	sum / Child-sum Tree-LSTM unit
comb	$\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^l$	Single-layer MLP / binary Tree-LSTM unit

Tree-LSTM



$$(L(\Sigma) + \Omega) \times S(L(\Sigma))$$

$$(\underline{L(\Sigma)} + \Omega) \times S(L(\Sigma))$$

flat

enumEnc

enumEnc

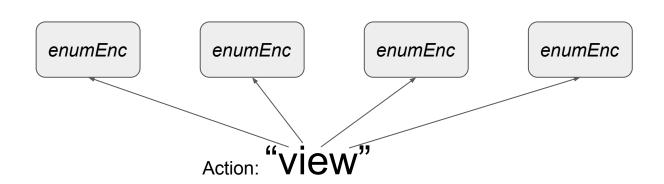
enumEnc

enumEnc

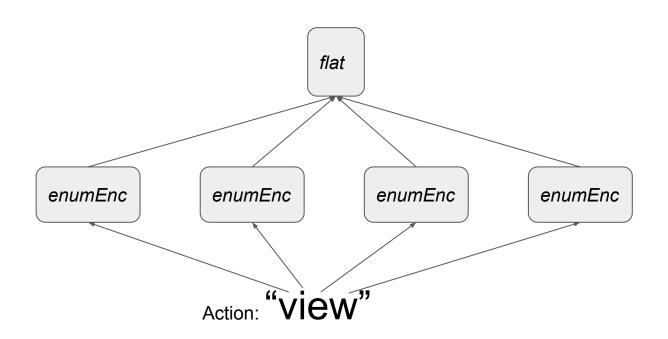
Action: "VIEW"

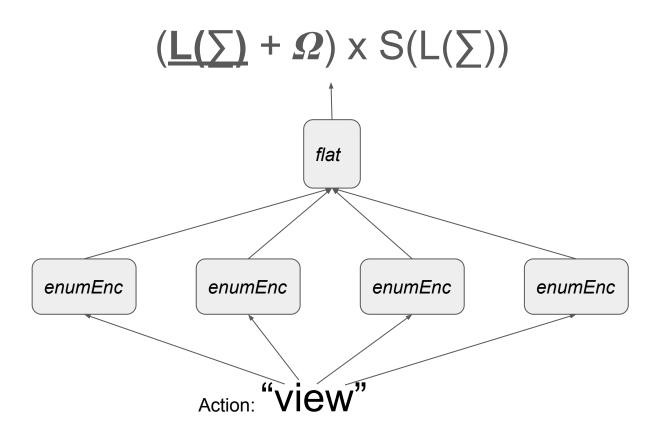
$$(\underline{L(\Sigma)} + \Omega) \times S(L(\Sigma))$$

flat



$$(\underline{L(\Sigma)} + \Omega) \times S(L(\Sigma))$$





$$(L(\Sigma) + \Omega) \times \underline{S(L(\Sigma))}$$

aggr

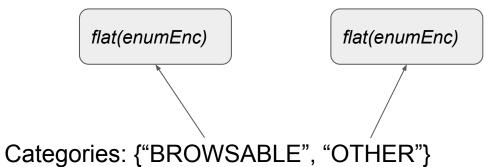
flat(enumEnc)

flat(enumEnc)

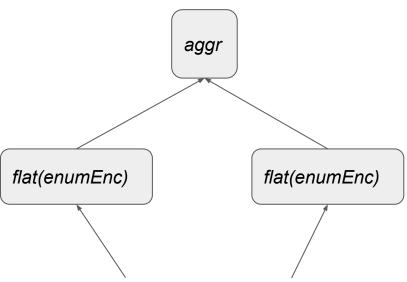
Categories: {"BROWSABLE", "OTHER"}

$$(L(\Sigma) + \Omega) \times \underline{S(L(\Sigma))}$$

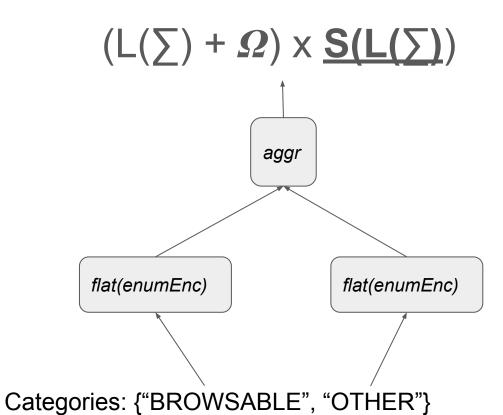
aggr



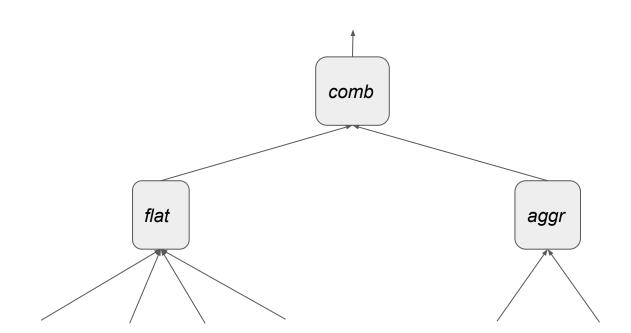
$$(L(\Sigma) + \Omega) \times \underline{S(L(\Sigma))}$$



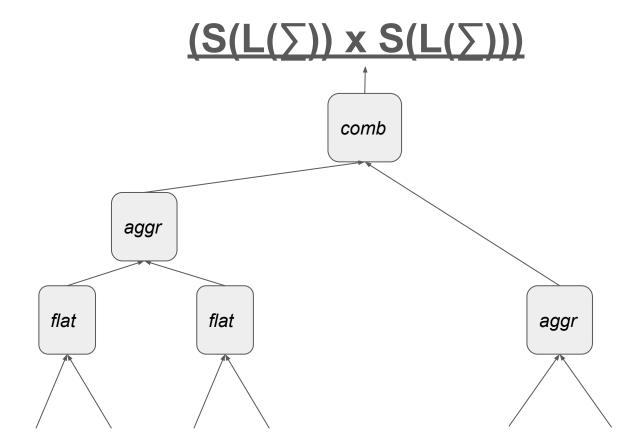
Categories: {"BROWSABLE", "OTHER"}



$$(L(\Sigma) + \Omega) \times S(L(\Sigma))$$



Filters



Different Implementations

Table 2: Instantiations of TDE parameters

Instantiation	TDE parameters					
	Type	enumEnc	flat	aggr	comb	
str-RNN	L(S)	lookup	RNN	-	(E.)	
str-cnn	$L(\Sigma)$	lookup	CNN	-	-	
typed-simple	full	lookup	CNN	sum	1-layer perceptron	
typed-tree	full	lookup	CNN	Tree-LSTM	Tree-LSTM	

Hyperparameters

ieter	Choice	
dimension	16	
kernel sizes kernel counts activation pooling	(1, 3, 5, 7) (8, 16, 32, 64) relu max	
hidden size	128	
dimensions activation	64 relu	
dimensions activation	$\langle 16, 1 \rangle$ $\langle \text{relu}, \sigma \rangle$	
	dimension kernel sizes kernel counts activation pooling hidden size dimensions activation dimensions	

Implementation Details

- Python with Keras (TensorFlow backend)
- Cross Entropy loss function (model outputs a probability)
- RMSprop variation of stochastic gradient descent
- Relu used for all activation functions
- LINN trained on GPU

Experimental Setup

- PRIMO corpus used for dataset
 - 10,500 Android Apps from Google Play
- IC3 + PRIMO abstract matching for static analysis
 - Provides dataset with must/may link labels
- Synthetic may links used for training and testing the model
- Model trained on a sampled subset of links
 - Using all available data too costly
 - Number of links inferred quadratic to the number of intents/filters
 - Sampling balanced between positive and negative labels
- Testing done only on may links

Simulating Imprecision

- Ground truth of may labels is unknown
- Synthetic may labels created by introducing imprecision to must links
 - Ex: add "(.*)" to the beginning of a string
 - Technique used by Octeau et al. when creating PRIMO
- First study empirical distribution of imprecision from corpus
 - Add imprecisions guided by the distribution of imprecision observed

Evaluation Metrics Used

F1 Score

- Measure of predictor's false-negative and false-positive rates
- Perfect precision/recall has F1 score of 1

ROC Curve

- Plot of true positive against true negative rate
- Perfect model has area under curve of 1

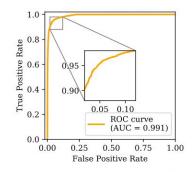
Kruskal's γ

- Correlation between ranking computed by model and ground truth
- Useful because we want to use model to present results in order of likelihood for programmers to observe

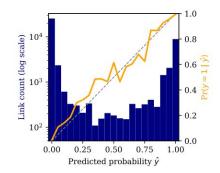
Results

Table 4: Summary of model evaluations

Instantiation	# Parameters	Inference time (μ s/link)	Testing γ	Testing F1	AUC	Entropy of \hat{y}	$Pr(y = 1 \mid \hat{y} > 0.95)$	$Pr(\hat{y} > 0.95)$
str-RNN	154,657	2220	0.970	0.891	0.975	3.002	0.980	0.089
str-cnn	27,409	57	0.988	0.917	0.988	2.534	0.998	0.139
typed-simple	142,417	157	0.989	0.920	0.988	2.399	0.996	0.173
typed-tree	634,881	171	0.992	0.931	0.991	2.220	0.994	0.200



(a) Receiver operating characteristic (ROC)



(b) Distribution of predicted link probabilities

Figure 5: Detailed results for the typed-tree instantiation

Observations

- Typed-tree yields the best overall results
- Typed-simple is still slightly better than Str-CNN
- str-CNN has the fastest inference time and best probability of true-positive among highly ranked links
- str-CNN may be preferable but market scale analysis would benefit from slight increases in accuracy
- 10 epochs of training take <20 minutes for all except str-RNN
 - Average computer used
 - Intel i7-6700 (3.4 GHz)
 - 32GB RAM
 - 1TB SSD
 - Nvidia GeForce GTX 970 GPU
- Most complex model has only 5.6MB storage cost

Str-CNN Characteristics

```
{"action": "NULL-CONSTANT", "categories": null}
{"actions": ["NULL-CONSTANTPOP_DIALOG", "NULL-CONSTANTPUSH_DIALOG_(.*)",
"(.*)REPLACE_DIALOG_(.*)", "APP-00489869YB964702HUPDATE_VIEW"], "categories":
null}
 "action": "NULL-CONSTANTREPLACE_DIALOG_(.*)",                                "categories": null}
{"actions": ["(.*).CLOSE"], "categories": null}
 "action": "(.*)", "categories": null}
"actions": ["android.media.RINGER_MODE_CHANGED",
"sakurasoft.action.ALWAYS_LOCK", "android.intent.action.BOOT_COMPLETED"],
"categories": null}
{"action": "(.*)LOGIN_SUCCESS", "categories": null}
["actions": ["NULL-CONSTANTLOGIN_FAIL", "NULL-
CONSTANTCREATE_PAYMENT_SUCCESS", "(.*)FATAL_ERROR",
"(.*)CREATE_PAYMENT_FAIL". "NULL-CONSTANTLOGIN_SUCCESS"]. "categories": null}
 "action": "APP-00489869YB964702HREPLACE_DIALOG_(.*)",                        "categories": null}
 "actions": ["APP-00489869YB964702HLOGIN_FAIL", "APP-
00489869YB964702HCREATE_PAYMENT_FAIL", "NULL-CONSTANTCREATE_PAYMENT_SUCCESS",
"(.*)FATAL_ERROR", "NULL-CONSTANTLOGIN_SUCCESS"], "categories": null}
 {"actions": ["com.joboevan.push.message.NULL-CONSTANT"], "categories": null}
 "action": "", "categories": [["(.*)"]}
{"actions": ["com.dreamware.Hells_Kitchen.CONCORRENTE"], "categories": ["android.intent.category.DEFAULT"]}
              ( null) ( null)
 "actions": ["android.intent.action.MEDIA_BUTTON",
"com.ez.addon.MUSIC_COMMAND", "android.media.AUDIO_BECOMING_NOISY"],
"categories": null}
```

Figure 6: Explaining individual instances

Str-CNN Characteristics

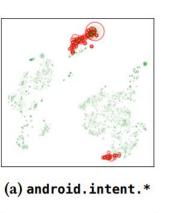
- Tested input strings to see what patterns kernels are picking up
- Important segments seem to be picked up
 - o conv1d size5:14 kernel activated on ".*"
 - conv1d size5:3 kernel activated on "null"
 - conv1d size7:0 kernel activated on "VIEW"

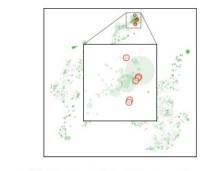
Table 5: Some CNN kernels and their top stimuli

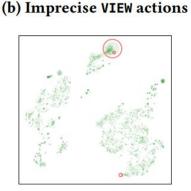
convld_size5:14		conv1d	_size5:3	conv1d_size7:0		
segment	activation	segment	activation	segment	activation	
(.*)R	1.951	null}	3.796	TAVIEWA	3.704	
(.*)u	1.894	null,	2.822	n.VIEW"	3.543	
(.*)t	1.893	sulle	2.488	y.VIEW"	3.384	

Typed-Simple Visualization

- t-SNE non-linear dimensionality reduction
 - Similar objects mapped to nearby points
 - Dissimilar objects mapped to distant points
- Six imprecise versions of VIEW captured
 - (.*) occurs at different points in the string
 - Imprecision reflected spatially
- DEFAULT, (.*), null categories all in close proximity







(c) dev*.app*.*.FEED*

(d) DEFAULT, total imprecise and null categories

Figure 7: Intent encodings visualized using t-SNE

Possible Concerns/Invalidities

- Tested on synthetic may links
 - Follows empirical distribution of imprecisions
 - Might not capture all meaning in real world data
- Neural network setup is complex
 - Difficult to know if relevant features are being captured or the NN is getting "lucky"
 - Best performing model has many parameters and may be overfitting
- Performance is not significantly better than plain str-CNN
 - More time invested may discover a simpler and better way to embed intents/filters

Future Work

- Main novelty of this paper was Type-Directed Encoders
 - Framework for composing neural networks
 - Applies nicely to the problem of link inference in the Android domain
- TDE could be applied to other contexts that exhibit a structure of data composed of subtypes

References

- https://arxiv.org/pdf/1809.04059.pdf
- http://delivery.acm.org/10.1145/2840000/2837661/p469-octeau.pdf?ip=160.3
 9.169.169&id=2837661&acc=CHORUS&key=7777116298C9657D%2ECCAF
 A7F43E96773E%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm_
 _=1554088993_7d6fdb889b8c94e87c503e4666f2cb7a
- https://arxiv.org/pdf/1503.00075.pdf
- https://developer.android.com/guide/components/intents-filters