
58 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

FIVE DEEP QUESTIONS
IN COMPUTING

While it is easy to be swept away by the
cool things we do, we should not forget
that the field also contributes to funda-
mental scientific knowledge. So let’s take

a step back from the frenzy and think about the sci-
ence computing pursues. To help, I pose five deep
questions [3]:

P = NP?
What is computable?
What is intelligence?
What is information?1

(How) can we build complex systems simply?

There is nothing special about the number five; it is
just a way to get a list going. I call them deep
because they speak to the foundations of the field,
reflecting the kind of far-reaching issues that drive
day-to-day research and researchers toward under-
standing and expanding the frontiers of computing.

The question of whether P equals NP is undeni-
ably the most well-known unsolved problem in the
field. A proof in the positive (P = NP) would have
profound practical consequences, shaking the founda-

The field of computing is driven by boundless technological innovation and societal expecta-
tions. The field runs at such a maddening pace that we barely have time to pause and enjoy the
ride. The time between an ingenious idea springing from a research laboratory or coffeehouse
conversation and its emergence as a product or service is so short and the frequency of the com-
mercialization cycle of ideas so great that we rarely stop to savor even our own successes.

Even if they seem unanswerable, just trying to answer them will advance the
field’s scientific foundations and help engineer the systems we can only imagine.

BY JEANNETTE M. WING

1I thank Robert L. Constable, Dean of Faculty of Computing and Information Science at Cornell University, Ithaca, NY, for suggesting this question.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 59

tions of cryptography upon which today’s electronic
transactions are based. It could give us efficient ways
to solve intractable problems (such as the traveling
salesman problem and the subgraph isomorphism
problem) that arise in mathematics, as well as in every
other science and engineering discipline. A proof in
the negative (P ≠ NP) would have profound theoret-
ical consequences for computer science and mathe-
matics, perhaps by discovering a brand-new proof
technique.

In order to answer what is computable, we must
consider the underlying machine (abstract or physi-
cal) that is the computer. Consider the Internet as a
computer. What is a universal machine model for the

Internet? Consider a molecular computer, a DNA
computer, a nano-scale computer, or even a quantum
computer [1]. What problems can and cannot be
solved through them? If contemplating these emerg-
ing substrates is not mind-bending enough, consider
a human and a machine working together as a single
computer to solve problems that neither would be
able to solve alone [2]. Given that humans and
machines have complementary computing capability,
now ask: What is computable?

In the 1950s, the founders of artificial intelligence
challenged computing researchers with the third
question. As our understanding of human speech,
vision, language, and motor skills has improved since
then, and as we have achieved scientific and techno-
logical advances in computer science, neuroscience,
cognitive science, and the behavioral sciences, the
landscape has changed dramatically. Computer scien-
tists can now probe both deeply and broadly in our
quest to understand intelligence, from the neuron to
the brain, from a person to a population.

“Information” in the field of computing has seem-
ingly disparate meanings depending on scientific con-
text: information theory, information processing,
information retrieval, or information science. Distin-
guishing signal from noise is relevant in all these con-
texts, whether we mean transmitting bits over a wire,
searching for an answer through the Web, or extract-
ing knowledge from an ocean of sensor data. In
essence, there is a chain of representations, from bits
to data to information to knowledge. Beyond com-
puting, nature has its own way of encoding informa-
tion that is not as simplistic as using 0s and 1s. The
genetic code is an obvious example. More sweepingly,
by interpreting a DNA strand, a cell, or an organism
as a reactive system (processing inputs from its envi-
ronment and producing outputs that affect that envi-
ronment), it is no longer metaphorical to say biology
is an information science. Ditto geosciences. Mean-
while, with quantum computing, it’s not bits but
qubits.

Our engineering prowess creates computer, com-
munication, and information systems that enhance
everyone’s daily lives and enable us to do astonishing
things: instantaneous access to and sharing of infor-
mation through palm-size devices with friends in

social networks of tens of millions of users; dance
with remote partners through 3D tele-immersion [4];
and lead alternative lives through avatars that can
even defy the laws of physics in virtual worlds. The
complexity of these systems delivers the richness of
functionality we enjoy today, with time and space
performance that spoil us. Their complexity, however,
also makes it difficult for even the original system
developers to analyze, model, or predict system
behavior, let alone anticipate the emergent behavior
of multiple interacting systems.

Can we build systems with simple and elegant
designs that are easy to understand, modify, and
evolve yet still provide the functionality we might
take for granted today and dream of for tomorrow? Is
there a complexity theory for analyzing our real-
world computing systems as there is for the algo-
rithms we invent? Such a theory would need to
consider measures of not just time and space but of
energy and cost, as well as dependability, security,
and usability, most of which elude quantification
today. More ambitiously (or crazily), is there a com-
plexity theory that spans both the theory and prac-
tice of computing?

I pose these questions to stimulate deep thinking
and further discussion. What deep questions about
computing would you want answered? In 50 years,
how different will they and their answers be from
what we ask and are able to answer today?

References
1. Reiffel, E. and Polak, W. An introduction to quantum computing for

non-physicists. ACM Computing Surveys 32, 3 (Sept. 2000), 300–335.
2. von Ahn, L. Games with a purpose. IEEE Computer (June 2006), 96–98.
3. Wing, J. Thinking about computing. Computing Research News 19, 5

(Nov. 2007).
4. Yang, Z., Yu, B., Wu, W., Diankov, R., and Bajscy, R. Collaborative

dancing in tele-immersive environment. In Proceedings of ACM Multi-
media (Santa Barbara, CA, Oct. 23–27). ACM Press, New York, 2006,
723–726.

Jeannette M. Wing (jwing@nsf.gov) is Assistant Director of the
Computer and Information Science and Engineering Directorate at the
National Science Foundation, Arlington, VA, and the President’s Pro-
fessor of Computer Science in the Computer Science Department at
Carnegie Mellon University, Pittsburgh, PA.

© 2008 ACM 0001-0782/08/0100 $5.00

c

60 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

Is there a complexity theory for analyzing our real-world
computing systems as there is for the algorithms we invent?

